Telomere Dysfunction Increases Mutation Rate and Genomic Instability
نویسندگان
چکیده
The increased tumor incidence in telomerase null mice suggests that telomere dysfunction induces genetic instability. To test this directly, we examined mutation rate in the absence of telomerase in S. cerevisiae. The mutation rate in the CAN1 gene increased 10- to 100-fold in est1Delta strains as telomeres became dysfunctional. This increased mutation rate resulted from an increased frequency of terminal deletions. Chromosome fusions were recovered from est1Delta strains, suggesting that the terminal deletions may occur by a breakage-fusion-bridge type mechanism. At one locus, chromosomes with terminal deletions gained a new telomere through a Rad52p-dependent, Rad51p-independent process consistent with break-induced replication. At a second locus, more complicated rearrangements involving multiple chromosomes were seen. These data suggest that telomerase can inhibit chromosomal instability.
منابع مشابه
Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression.
Hepatocellular carcinoma is among the most common and lethal cancers in humans. Hepatocellular carcinoma is commonly associated with physical or functional inactivation of the p53 tumor suppressor, high levels of chromosomal instability, and disease conditions causing chronic cycles of hepatocyte death and regeneration. Mounting evidence has implicated regeneration-induced telomere erosion as a...
متن کاملTelomere dysfunction promotes genome instability and metastatic potential in a K-ras p53 mouse model of lung cancer.
Current mouse models of lung cancer recapitulate signature genetic lesions and some phenotypic features of human lung cancer. However, because mice have long telomeres, models to date do not recapitulate the aspects of lung carcinogenesis-telomere attrition and the genomic instability that ensues-believed to serve as key mechanisms driving lung tumor initiation and progression. To explore the c...
متن کاملCdc73 suppresses genome instability by mediating telomere homeostasis
Defects in the genes encoding the Paf1 complex can cause increased genome instability. Loss of Paf1, Cdc73, and Ctr9, but not Rtf1 or Leo1, caused increased accumulation of gross chromosomal rearrangements (GCRs). Combining the cdc73Δ mutation with individual deletions of 43 other genes, including TEL1 and YKU80, which are involved in telomere maintenance, resulted in synergistic increases in G...
متن کاملEpidemiologic evidence for a role of telomere dysfunction in cancer etiology.
Telomeres, the dynamic nucleoprotein structures at the ends of linear chromosomes, maintain the genomic integrity of a cell. Telomere length shortens with age due to the incomplete replication of DNA ends with each cell division as well as damage incurred by oxidative stress. Patterns of telomere shortening, genomic instability, and telomerase expression in many cancer tissues compared to adjac...
متن کاملMitochondrial dysfunction leads to telomere attrition and genomic instability.
Mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence, apoptosis, aging and aging-associated pathologies. Telomere shortening and genomic instability have also been associated with replicative senescence, aging and cancer. Here we show that mitochondrial dysfunction leads to telomere attrition, telomere loss, and chromosome fusion and breakage, accompanied b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 106 شماره
صفحات -
تاریخ انتشار 2001